Курбатов Роман Владимирович

ФАЗОВЫЕ РАВНОВЕСИЯ,
СИНТЕЗ, СТРУКТУРА И СВОЙСТВА ФАЗ
В ТРОЙНЫХ ОКСИДНЫХ СИСТЕМАХ
М₂О – MgO – B₂O₃ (М = Li÷Cs, Tl)

02.00.04 – физическая химия

АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата химических наук

Улан-Удэ – 2012
Работа выполнена в Учреждении Российской академии наук
Байкальском институте природопользования
Сибирского отделения РАН (БИП СО РАН)

Научный руководитель: Базаров Баир Гармаевич
(БИП СО РАН)

Официальные оппоненты: доктор химических наук, с.н.с.
Таусон Владимир Львович
(ИГХ СО РАН)
доктор химических наук, профессор
Танганов Борис Бадмаевич
(ВСГУТУ)

Ведущая организация: Московский государственный технический университет радиотехники, электроники и автоматики
(МГТУ МИРЭА)

Защита диссертации состоится 22 февраля 2012 г. в 1300 часах на заседании диссертационного совета Д 212.074.03 при Иркутском государственном университете по адресу: 664033, Иркутск, ул. Лермонгова, 126, химический факультет ИГУ, ауд. 430.

С диссертацией можно ознакомиться в Научной библиотеке Иркутского государственного университета.

Отзывы на автореферат в 2-х экземплярах с подписью составителя, заверенные печатью организации, просим направлять на имя секретаря диссертационного совета по адресу: 664003, Иркутск, ул. К. Маркса, 1. ИГУ, химический факультет.

Автореферат разослан «21» января 2012 г.

Ученый секретарь
dиссертационного совета
Белых Л.Б.
dоктор химических наук, профессор
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Развитие современной техники и высоких технологий постоянно сопровождается необходимостью в новых материалах, обладающих высокими показателями полезных свойств. Поэтому актуальными задачами являются, как улучшение характеристик известных материалов, так и создание новых.

Широкий интерес к боратам щелочных и щелочноземельных металлов возник в 80-е годы прошлого столетия, когда были получены первые нелинейно-оптические кристаллы бета-бората бария (β-BaB₂O₄). Позднее монокристалл трибората лития (LiB₃O₅), обладающий широкой областью прозрачности, высокой лучевой стабильностью и достаточно высокими нелинейно-оптическими характеристиками, нашел свое применение в лазерном приборостроении.

Кроме использования в области нелинейной оптики бораты широко представлены в дозиметрии ионизирующего излучения для контроля доз облучения. Примерами являются тетрабораты лития и магния, допиравенные редкоземельными элементами (Li₂B₄O₇:Dy [Ho,Tb]; MgB₄O₇:Dy [Ho,Tb]).

В связи с этим изучение тройных оксидных систем M₂O – MgO – B₂O₃, где M = Li±Cs, Tl, представляет интерес для поиска и синтеза новых соединений как основы нелинейно-оптических (НЛО) и термо-люминесцентных материалов.

Целью работы является:
Установление характера фазообразования в тройных оксидных системах M₂O – MgO – B₂O₃ (M = Li± Cs, Tl), синтез, структура и свойства образующихся фаз.

Для достижения поставленной цели необходимо было решить следующие задачи:

1. Определить характер фазовых отношений в системах M₂O – MgO – B₂O₃ (M = Li, Na, K, Rb, Cs, Tl) в субсолидусной области;
2. Синтезировать соединения, образующиеся в исследованных системах;
3. Расшифровать структуры новых соединений;
4. Исследовать физические и физико-химические свойства отдельных фаз.

Диссертационная работа выполнялась в соответствии с координационным планом РАН и является частью систематических исследований...
ний, проводимых в БИП СО РАН: «Разработка физико-химических основ создания новых оксидных фаз полифункционального назначения на основе Mo (VI), W (VI) и B» 2007-2009 гг. (ГР 012007 04261), «Направленный синтез активных диэлектриков и люминофоров на основе сложнокислых соединений Mo (VI), W (VI) и B» 2010-2012 гг. (ГР 012010 52498) и Междисциплинарный интеграционный проект фундаментальных исследований СО РАН «Фундаментальные проблемы роста и исследования физических свойств кристаллов, перспективных для электроники и оптики» 2009-2011 гг.

Работа поддерживалась грантами Российского фонда фундаментальных исследований (№06-08-00726a, №08-08-00958a, №11-03-00681a).

Научная новизна работы:
Новые экспериментальные данные по фазовым равновесиям, а также полученные в ходе выполнения работы выводы представляют интерес для теории фазовых равновесий, физики и химии расплавов:
• впервые установлено субсолидусное строение тройных оксидных систем \(M_2O – MgO – B_2O_3 \) (\(M = Li, Na, K, Rb, Cs, Ti \));
• обнаружено образование новых двойных боратов \(Na_{24}Mg_3B_{10}O_{30}, MMgBO_3 (M = K, Rb), M_2Mg_2B_{12}O_{21} (M = Cs, Ti) \);
• расшифрована кристаллическая структура боратов \(MMgBO_3 (M = K, Rb) \) и изучены ИК- и КР- спектры \(MMgBO_3 \) и \(M_{24}Mg_3B_{10}O_{30} (M = Li, Na) \);
• показано, что изменение ионного радиуса одновалентного металла в тройных оксидных системах \(M_2O – MgO – B_2O_3 \) (\(M = Li, Na, K, Rb, Cs, Ti \)) приводит к изменению фазовых соотношений;
• исследованы ТЛ свойства \(Li_{24}Mg_3B_{10}O_{30} \) и \(Na_{24}Mg_3B_{10}O_{30} \) при облучении \(\beta \)-источником и двойных боратов \(LiMgBO_3, Li_{24}Mg_3B_{10}O_{30}, Na_{24}Mg_3B_{10}O_{30}, NaMgBO_3, KMgBO_3, RbMgBO_3, Cs_2Mg_2B_{12}O_{21}, Ti_2Mg_2B_{12}O_{21} \) при облучении УФ светом: интенсивности \(M_{24}Mg_3B_{10}O_{30} \) и \(MMgBO_3 (M = Li, Na) \) не уступают интенсивности эталона ТЛД-580 и показано, что \(M_{24}Mg_3B_{10}O_{30} (M = Li, Na) \) и \(MMgBO_3 (M = Li, Na, K, Rb) \) могут быть основой высокочувствительных люминофоров;
• исследовано влияние вторичного заполнения тетраборатов магния (\(Mg_4B_7:O_7:Dy, Li \)) и кальция (\(CaB_4O_7:Dy,M [M = Li, Na, Tl] \));
• изучено легирование цезий-литивого бората оксидами \(Al_2O_3 \) и \(Rb_2O \) и выращены монооктазилы \(CsLiB_4O_{10}:Rb,Al \).
Проблемная значимость:
- фактический числовой материал (данные о температурах фазовых равновесий, рентгенографические данные новых боратов) может быть использован при разработке и оптимизации технологии выращивания кристаллов, для пополнения баз данных, а также в термодинамических расчетах;
- методом Риттвельда и минимизации производной разности были расшифрованы и уточнены структуры новых боратов, не имеющих структурные аналоги, это позволит решать структуры новых соединений.
- полученные двойные бораты могут служить основой создания дозиметров β-излучения и УФ света.
- результаты исследований по допированию тетраборатов магния и кальция являются основой для создания высокочувствительных термолюминесцентных, а легирование цезий-литиевого борат оксидами Al₂O₃ и Rb₂O позволяет получить совершенные кристаллы для лазерного приборостроения.

На защиту выносятся:
- Впервые полученные фазовые диаграммы тройных оксидных систем M₂O – MgO – B₂O₃ (M = Li-Cs, Tl) в субсолидусной области и образование двойных боратов: MMgBO₃ (M = Li, Na, K, Rb), M₂₄Mg₃B₁₀O₃₀ (M = Li, Na), Li₂MgB₂O₅, M₂Mg₂B₁₂O₂₁ (M = Cs, Tl).
- Структура соединений KMgBO₃ (a = 6.8302(4) Å, пр. гр. P₂₁₃) и RbMgBO₃ (a = 6.94926(5) Å, пр. гр. P₂₁₃), расшифрована с использованием метода Риттвельда и минимизации производной разности.
- Результаты изучения соединений MMgBO₃ и M₂₄Mg₃B₁₀O₃₀ (M = Li, Na) методами ИК- и КР-спектроскопии.
- Термоловоинесцентные свойства образцов M₂₄Mg₃B₁₀O₃₀ (M = Li, Na), MMgBO₃ (M = Li, Na, K, Rb), M₂Mg₂B₁₂O₂₁ (M = Cs, Tl), облученных β-источником и УФ светом.
- Допированные тетрабораты магния (MgB₄O₇:Dy, MgB₄O₇:Dy,Li) и кальция (CaB₄O₇:Dy,M [M = Li, Na, Tl]) как основа высоко-чувствительных термолюминесцентных.
- Легирование цезий-литиевого бората оксидами Al₂O₃ и Rb₂O позволяет получить оптически прозрачные и негироскопичные образцы.
Личный вклад автора:
Автор непосредственно участвовал в подготовке и проведении экспериментов, анализе и обсуждении результатов. Вклад соискателя и принадлежность полученных результатов автору признаны всеми соавторами.

По теме диссертации опубликовано 13 работ, в том числе 3 статьи в рекомендуемых журналах, рекомендованных ВАК.

Структура и объем диссертации: Диссертация состоит из введения, литературного обзора, экспериментальной части, заключения, общих выводов, списка цитируемой литературы. Работа изложена на 114 страницах, включает 70 рисунков и 20 таблиц, список цитируемой литературы из 121 наименования.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулирована цель работы, определены основные задачи исследования, показаны научная новизна и практическая значимость полученных результатов.

Глава 1 посвящена обзору и обсуждению литературных данных. Представленная в ней информация освещает современное состояние исследований по основным проблемам и вопросам боратных систем: фазовые диаграммы M_{2}O – B_{2}O_{3} (M = Li, Cs, Tl), AO – B_{2}O_{3} (A = Mg, Ca, Sr, Ba); физико-химические характеристики отдельных представителей простых и двойных боратов щелочноземельных элементов. Обсуждение температурных режимов синтеза, рентгенографических и термических свойств боратов и особенностей
выращивания их моноокристаллов дают представление о сложности выполнения экспериментальных работ. Обобщенные литературные данные по физико-химическим свойствам изученных боратов характеризуют значимость их изучения. Приведенный в обзоре материал показывает актуальность задач, направленных на поиск материалов с полифункциональными свойствами: нелинейно-оптическими, термолюминисцентными и др., что позволило сформулировать цель представленной работы и определить ее задачи.

В главе 2 рассмотрены методики синтеза и исследования полученных соединений.

Поликристаллические образцы готовили методом твердофазного синтеза по стандартной керамической методике. Отжиг проводили в алюндовых и платиновых тиглях на воздухе, с помощью камерных лабораторных электропечей сопротивления СНОЛ 10/11 и муфельной высокотемпературной печи L3/11/P320 фирмы Nabertherm с программным охлаждением, обеспечивающих точность поддержания температуры ±20°C и ±5°C, соответственно. Реакционные смеси перетирали в яшмовых и агатовых ступках каждые сутки отжига до достижения равновесия, которое контролировали рентгенографически.

Рентгенофазовый анализ (РФА) проводился на порошковом авто-дифрактометре D8 Advance фирмы Bruker AXS (CuKα-излучение, графитовый монохроматор) на сцинтилляционном счетчике и автоматическом детекторе Vantec-1.

Триангуляцию систем проводили по методу «пересекающихся разрезов».

Структура новых боратов определена и уточнена с использованием метода Ритвельда и минимизации производной разности (МПР) совместно с сотрудниками Института химии и химической технологии СО РАН (г. Красноярск). Съемка дифрактограмм для решения структуры проводилась на дифрактометре PANalytical X’Pert PRO с детектором PIXcel, графитовый монохроматор, CoKα-излучение.

Спектральный анализ выполнен на приборах Scimitar FTS 2000 (ИК-спектрометр) и RFS100/S (КР-спектрометр) в Институте неорганической химии им. А.В. Николаева СО РАН (г. Новосибирск).

ДСК проведена на приборе синхронного термического анализа STA 449C Netzsch с квадрупольным масс-спектрометром QMS 403C.

Термолюминисцентный (ТЛ) анализ проводился в Геологическом Институте СО РАН (г. Улан-Удэ). Для облучения были использованы лампа УФ-света и стронций-иттриевый β-источник. Результаты
измерений ТЛ чувствительности нормировались на сигнал от эталона (ТЛД-580).

В главе 3 изложены результаты исследования систем $M_2O - MgO - B_2O_3$ ($M = Li+Cs, Th$) и изучения физико-химических свойств образующихся в них соединений.

Тройная оксидная система $Li_2O – MgO – B_2O_3$

В результате РФА образцов, составы которых отвечали точками пересечения всех возможных разрезов и с учетом образующихся двойных и тройных оксидных соединений, построены изотермические разрезы систем при 550-600°C и 650-700°C (рис. 1а и 1б).

В системе $Li_2O – MgO – B_2O_3$ при 550-600°C образуются устойчивые двойные бораты (рис. 1а). Изотермическое сечение системы при 550-600°C характеризуется 15 квазибинарными разрезами, делящими систему на 14 тройных фаз: $A – LiMgBO_3$ (рис. 2а) и $C – Li_2MgB_2O_5$ (рис. 2в).
При повышении температуры до 650-700°С бораты Li₂B₂O₅, Li₂B₅O₁₃ и Li₂MgB₂O₅ разлагаются. Соединение LiMgBO₃ устойчиво при этих условиях и наряду с ним образуется соединение B – Li₂₄Mg₃B₁₀O₃₀ (рис. 2б). Новое соединение Li₂₄Mg₃B₁₀O₃₀ выявлено в точке, отвечающей составу (12:3:5) (рис. 1б), и изотермический разрез характеризуется 14 квазибинарными разрезами, делящимися на 13 треугольников, и образованием двух тройных фаз: A – LiMgBO₃ (рис. 2а) и B – Li₂₄Mg₃B₁₀O₃₀ (рис. 2б).

Тройная оксидная система Na₂O – MgO – B₂O₃

По результатам РФА построено изотермическое сечение системы Na₂O – MgO – B₂O₃ (рис. 3). Подтверждено образование NaMgBO₃ (рис. 4а) и получено новое соединение Na₂₄Mg₃B₁₀O₃₀ (рис. 4б).

Изотермическое сечение системы Na₂O – MgO – B₂O₃ при 550-650°С разбивается тринадцать квазибинарными разрезами на 12 треугольников. В огранненной системе Na₂O – B₂O₃ образуются NaBO₂, Na₂B₄O₇, Na₂B₆O₁₀, Na₂B₉O₁₃; остальные либо существуют в узком интервале температур (Na₆B₄O₉, Na₄B₆O₁₁, Na₄B₁₀O₁₇, Na₂B₁₈O₂₈), либо образуются при более высоких температурах (Na₆B₂O₆, Na₄B₂O₅, NaB₂O₈), что находится вне области рассматриваемого нами интервала температур.

Рис. 3. Изотермическое сечение системы Na₂O – MgO – B₂O₃ при 550-650°С.
A – соединение NaMgBO₃ (1:2:1),
B – соединение Na₂₄Mg₃B₁₀O₃₀ (12:3:5).

Рис. 4. Фрагменты рентгенограмм соединений системы Na₂O – MgO – B₂O₃:
a – NaMgBO₃ (1:2:1);
b – Na₂₄Mg₃B₁₀O₃₀ (12:3:5).
Тройная оксидная система $\text{K}_2\text{O} – \text{MgO} – \text{B}_2\text{O}_3$

По результатам РФА построена фазовая диаграмма системы $\text{K}_2\text{O} – \text{MgO} – \text{B}_2\text{O}_3$ в субсолидусной области (650-700°C) (рис. 5).

В системе $\text{K}_2\text{O} – \text{MgO} – \text{B}_2\text{O}_3$ при 650-700°C было подтверждено образование на стороне $\text{K}_2\text{O} – \text{B}_2\text{O}_3$ соединений составов KBO_2, $\text{K}_2\text{B}_4\text{O}_7$, KB_5O_8. Другие известные из литературы бораты калия разлагаются при 650°C (KB_3O_5) или образуются при 700°C ($\text{K}_4\text{B}_{10}\text{O}_{17}$). При 550°C образуется новое соединение KMgBO_3 (рис. 6). Система $\text{K}_2\text{O} – \text{MgO} – \text{B}_2\text{O}_3$ содержит девять квазибинарных разрезов, делящих систему на девять областей фаз.

![Рис. 5. Изотермическое сечение системы $\text{K}_2\text{O} – \text{MgO} – \text{B}_2\text{O}_3$ при 650-700°C. A – соединение KMgBO_3 состава (1:2:1).](image)

![Рис. 6. Фрагмент рентгенограммы соединения KMgBO_3 (1:2:1).](image)

Тройная оксидная система $\text{Rb}_2\text{O} – \text{MgO} – \text{B}_2\text{O}_3$

С учетом образующихся двойных и тройных оксидных фаз по данным РФА построены изотермические сечения системы $\text{Rb}_2\text{O} – \text{MgO} – \text{B}_2\text{O}_3$ при 550-600°C и 650-700°C (рис. 7а и 7б, соответственно).

![Рис. 7. Изотермические сечения системы $\text{Rb}_2\text{O} – \text{MgO} – \text{B}_2\text{O}_3$ при 550-600°C (а) и 650-700°C (б). A – соединение RbMgBO_3 (1:2:1).](image)

При отжиге 500-700°C в системе $\text{Rb}_2\text{O} – \text{MgO} – \text{B}_2\text{O}_3$ подтверждено образование на стороне $\text{Rb}_2\text{O} – \text{B}_2\text{O}_3$ соединений составов RbBO_2, Rb_2BO_2, $\text{Rb}_3\text{B}_4\text{O}_7$, $\text{Rb}_2\text{B}_5\text{O}_8$, $\text{Rb}_4\text{B}_10\text{O}_{17}$, Rb_3BO_2, Rb_2BO_2, Rb_3BO_2.
Rb₂B₄O₇, RbB₃O₅. Необходимо отметить, что предполагаемые квазиби-
нарные сечения MgB₂O₇– Rb₃B₇O₁₂, MgB₂O₇ – Rb₂B₁₉O₃₁ и MgB₂O₇ –
RbB₅O₈ не реализуются, поскольку бораты Rb₃B₇O₁₂, Rb₂B₁₉O₃₁ и
RbB₅O₈ в системе обнаружены в виде смесей более стабильных фаз.
При 550°C образуется новое соединение RbMgBO₃ (рис. 8).

Изотермический разрез системы
Rb₂O – MgO – B₂O₃ при 550-600°C пред-
ставляет треугольник с 9 квазибиарны-
ми разрезами, делящими систему на 9
областей (рис. 7а). При 650-700°C хара-
ктер триангуляции системы меняется (рис.
7б).

Troïna oxiddnaya sistem Cs₂O – MgO – B₂O₃

При отжиге 600-650°C в системе Cs₂O – MgO – B₂O₃ было под-
твердено образование на стороне Cs₂O – B₂O₃ соединений составов
CsBO₂, CsB₂O₅, CsB₅O₈ (рис. 9); остальные бораты цезия (Cs₂B₄O₇,
Cs₃B₇O₁₂, Cs₃B₁₃O₂₁) являются метастабильными и в условиях наше-
го эксперимента не обнаружены. Изотермический разрез системы Cs₂O –
MgO – B₂O₃ представляет треугольник с 9 квазибиарными разрезами,
делящими систему на 9 областей существующих фаз при 600-650°C.
Установлено образование нового бората Cs₂Mg₂B₁₂O₂₁ (рис. 10).

Troïna oxiddnaya sistem Tl₂O – MgO – B₂O₃

Проведен РФА образцов и построено изотермическое сечение
системы Tl₂O – MgO – B₂O₃ (при 550-600°C) (рис. 11).
В системе Tl₂O – MgO – B₂O₃ подтверждено образование на
стороне Tl₂O – B₂O₃ соединений составов TlBO₂, TlB₃O₅, TlB₅O₈;
бораты Tl₂B₄O₇ и Tl₂B₈O₁₃ метастабильны. В системе образуется новое тройное соединение Tl₂Mg₂B₁₂O₂₁ (рис. 12). Изотермический разрез системы Tl₂O – MgO – B₂O₃ представляет собой треугольник с девятью квазибинарными разрезами, делящими систему на девять областей сосуществующих фаз.

Кристаллическая структура MMgBO₃ (M = K, Rb)
Методом Ритвельда и минимизации производной разности [1, 2] была определена и уточнена кристаллическая структура MMgBO₃ (M = K, Rb). Путем анализа положения дифракционных пиков и систематических погрешностей установлено, что исследуемые соединения кристаллизуются в кубической сингонии с пр. гр. P2₁3. Уточнение структуры проведено методом МПР в анизотропном приближении для всех атомов с индексами достоверности R_{DDM} = 3.4 %, R_F = 1.2 % (табл. 1).

Таблица 1

<table>
<thead>
<tr>
<th>Атом</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>У_экв</th>
<th>Расстояния</th>
<th>Pb—B</th>
<th>Mg—O</th>
<th>K—B</th>
<th>Mg—O</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0.826(2)</td>
<td>0.765(2)</td>
<td>0.655(2)</td>
<td>0.015(3)</td>
<td>K—B</td>
<td>3.277(0)</td>
<td>Mg—O</td>
<td>2.113(9)</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.140(8)</td>
<td>0.143(8)</td>
<td>0.143(8)</td>
<td>0.011(7)</td>
<td>Mg—O</td>
<td>2.145(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>0.746(2)</td>
<td>0.454(4)</td>
<td>0.581(3)</td>
<td>0.019(7)</td>
<td>O—B</td>
<td>1.416(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Параметры полученной кубической элементарной ячейки:
KMgBO₃: a = 6.8302(4) Å, V = 318.65(3) Å³, Z = 4, пр. гр. P2₁3;
Структура MMgBO₃ (M = K, Rb) отличается по типу и симметрии от структур известных боратов одно- и двухвалентных металлов [3] и представляет трехмерный каркас, состоящий из треугольных плоских BO₃-группировок и искаженных октаэдров MgO₆, сочлененными ребрами, между которыми располагаются атомы M (M = K, Rb), координированные девятью атомами кислорода (рис. 13). Совокупность полостей, в которых находятся атомы M, образует туннели в направлении [111], соединенные между собой «окнами» (рис. 13d).

![Diagram of MMgBO₃ structure](image)

Рис. 13. Кристаллическая структура MMgBO₃ (M = K, Rb): a) координация атомов в структуре; b) общий вид; c) проекция [100]; d) проекция [111].

Дифференциальная сканирующая калориметрия MMgBO₃ (M = K, Rb)

По данным ДСК двойные бораты KMgBO₃ и RbMgBO₃ плавятся при 921,8°C и 865,5°C, соответственно (рис. 14).
ИК- и КР-спектры боратов MMgBO₃ и M₂₄Mg₃B₁₀O₃₀ (M = Li, Na)

Колебательные спектры соединений MMgBO₃ и M₂₄Mg₃B₁₀O₃₀ (M = Li, Na) подтверждают изоструктурность и центросимметричность изоформулярных соединений. ИК- и КР-спектры представлены на примере соединений лития на рис. 15 и рис. 16.

Рис. 14. Диаграмма дифференциальной сканирующей калориметрии соединений KMgBO₃ (1) и RbMgBO₃ (2).

Рис. 15. Фрагменты ИК-спектров: а – LiMgBO₃; б – Li₂₄Mg₃B₁₀O₃₀.

Рис. 16. Фрагменты КР-спектров: A – LiMgBO₃; B – Li₂₄Mg₃B₁₀O₃₀.
Соединение MMgBO₃ (M = Li, Na) имеет пр.гр. C₁2/c1 [4], что соответствует фактор-группе C₂ᵥ. По фактор-группе определена сайт-группа C₁, так как только в этом случае происходит расщепление вырожденных колебаний на пары полос, и все шесть колебаний становятся активными, как в ИК-спектре, так и в КР-спектре [5]. Исходя из спектрограмм, оба соединения имеют в своем составе одинаковые плоские группировки атомов [BO₃]³⁻ [6]. По данным колебательной спектроскопии соединения MMgBO₃ и M₂₄Mg₃B₁₀O₃₀ (M = Li, Na) являются центросимметричными.

Изучение термолюминисценции боратов M₂₄Mg₃B₁₀O₃₀ (M = Li, Na), MMgBO₃ (M = Li, Na, K, Rb) и M₂Mg₃B₁₂O₂₁ (M = Cs, Tl) перед облучением и съемкой боратов проводили «высвечивание» (рис. 17 и 18). После «высвечивания» образцы облучали источником β-излучения в течение 30 минут (или 20 минут лампой УФ-света) и затем проводили съемку ТЛ активности в камере со счетчиком света на тонкой алюминиевой пластинке, которая нагревалась со скоростью 5°C/сек.

![Рис. 17. Кривая ТЛ Li₂₄Mg₃B₁₀O₃₀ после выдержки на свету (1) и «высвечивания» съемка (2).](image1)

![Рис. 18. Кривая ТЛ RbMgBO₃ после выдержки на свету (1) и «высвечивания» съемка (2).](image2)

![Рис. 19. Кривая ТЛ (β-облучение) Na₂₄Mg₃B₁₀O₃₀ (1) с эталоном ТЛД-580 (2).](image3)

При облучении β-источником интенсивность термолюминисценции образцов Li₂₄Mg₃B₆O₁₀, Na₂₄Mg₃B₆O₁₀ и NaMgBO₃ меньше ТЛ интенсивности эталона ТЛД-580 (рис. 19 и 20).

Облучение образцов ультрафиолетовым светом показало интенсивный ТЛ эффект для всех образцов (рис. 21 и 22).
Создание термолюминисцентных материалов на основе боратов

Легированный тетраборат магния является основой для создания высокочувствительных термолюминисцентных материалов (рис. 23 а). Вторичное допирование дает увеличение ТЛ активности и уширение главного рефлекса (рис. 23 б).

Замещение атомов Mg на Ca в борате MgB₄O₇ приводит к увеличению интенсивности кривой термического высвечивания (табл. 2) и неизменимости ее положения, что связано с одинаковым типом ТЛ ловушек. Группой ученых [6] были изучены ТЛ свойства допированного CaB₄O₇:Dy и установлено, что кривая термического высвечивания имеет один рефлекс при 230-240°С с длинами волн в 480 и 580 нм и позиция данного рефлекса не меняется с изменением длины волны облучения.
С целью получения высокочувствительного термолюминесцентного материалов на основе \(\text{CaB}_4\text{O}_7: \text{Dy} \) проведено вторичное дойпирование термолюминесцентного материалов одновалентными элементами и установлено, что в отличие от \(\text{MgB}_4\text{O}_7: \text{Dy} \) при вторичном дойпировании \(\text{CaB}_4\text{O}_7: \text{Dy} \) на кривой термического высвечивания появляется второй низкотемпературный рефлекс, связанный с образованием дополнительных аддитивных центров окраски. В результате вторичного дойпирования \(\text{CaB}_4\text{O}_7: \text{Dy} \) лигением, натрием и таллием были получены образцы, кривые термического высвечивания которых содержали рефлюкс, различающиеся по интенсивности и температуре высвечивания (рис. 24).

Таблица 2

<table>
<thead>
<tr>
<th>(\text{Mg}_{1-x}\text{Ca}_x\text{B}_4\text{O}_7)</th>
<th>(x = 0,1)</th>
<th>(x = 0,5)</th>
<th>(x = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_\text{опт}, %)</td>
<td>132,3±1,3</td>
<td>148,7±8,7</td>
<td>166,3±7,1</td>
</tr>
</tbody>
</table>

Легирование \(\text{CsLiB}_6\text{O}_{10} \)

Легирование \(\text{CsLiB}_6\text{O}_{10} \) проводили добавлением к исходной синтезируемой смеси порошка \(\text{Al}_2\text{O}_3 \) от 0,1 до 15 мсли%, производили отжиг с выдержкой смеси при 450°C в течение 120 часов и проводили РПА. Изменения в дифракционной картине были обнаружены при добавлении \(\text{Al}_2\text{O}_3 \) свыше 10 мсли% (рис. 25).

В синтезируемую смесь добавляли карбонат рубидия по формуле \(\text{Cs}_{(1-x)}\text{Rb}_x\text{LiB}_6\text{O}_{10} \) до появления других рефлексов на РПА. При \(x \leq 0,1 \) дифракционная картина неизменна, а при \(x > 0,1 \) наблюдаются рефлексы, не относящиеся к рефлексым CLBO (рис. 26).
Рис. 25. Фрагмент рентгенограммы CsLiB₆O₁₀ + Al₂O₃ 5 мас% после отжига (450°C 120 часов). Штрихрентгенограмма соответствуют чистому CsLiB₆O₁₀.

Рис. 26. Фрагмент рентгенограммы Cs₀,₉Rb₀,₁LiB₆O₁₀ (нижняя часть) и Cs₀,₇₅Rb₀,₂₅LiB₆O₁₀ (верхняя часть).

Совместное введение Al₂O₃ и Rb₂CO₃ в исходную реакционную смесь Csᵢ₋ₙRbᵢLiB₆O₁₀₋ₙ·yAl₂O₃, где 0 < x < 0,5 и 0 < y < 0,3, дало оптимальный результат при x = 0,07 и y = 0,3, полученный после отжига при 500°С в течение 80 часов (рис. 27).

Рис. 27. Фрагмент рентгенограммы CLBO 7 мол% Rb₂O с 7 мас% Al₂O₃ (верхняя) и CLBO 10 мол% Rb₂O с 7 %мас Al₂O₃ (нижняя) после отжига (500°С 80 часов).

Легированный CLBO обладает меньшей гигроскопичностью по сравнению с CLBO без легирования. За 2 недели нахождения на...
открытом воздухе его масса увеличилась лишь на 2%, а нелегированного – на 9%. После прокаливания в течение 10 часов при 250-300°C интенсивность рефлексов дифрактограммы легированного CLBO не изменилась, а у нелегированного – уменьшилась.

Кристаллы CsLiB₆O₁₀, легированные оксидами Al₂O₃ и Rb₂O, выращивались совместно с сотрудниками Института минералогии и петрографии СО РАН (г. Новосибирск) методом TSSG, где в качестве растворителя использовали CsLiMoO₄ и NaF. Выращенные кристаллы CLBO:Al (рис. 28) оптически прозрачны, без видимых трещин и включений, и при годовой выдержке кристалл не изменился по массе и прозрачности. Также была получена друзья из монокристаллов CsLiB₆O₁₀:Rb,Al (рис. 29).

Анализ литературных данных по исследованию ограничивающих двойных оксидных систем M₂O – B₂O₃ (M = Li, Na, K, Rb, Cs, Tl) и MO – B₂O₃ (M = Mg, Ca, Sr, Ba) выявил разногласия в данных разных авторов. Проведённое обобщение позволило выделить некоторые особенности поведения боратов, к которым можно отнести склонность к стеклению, образование метастабильных соединений в области, богатой B₂O₃, а также существование высокотемпературных фаз. Из представленных литературных данных видно, что по мере расширения методологических возможностей исследований изменяется и уточняется характер фазовых отношений.

Для выявления закономерностей влияния природы катионов на состав и структуру образующихся соединений известные в литературе и полученные нами двойные бораты представлены в таблице 3.

Сравнение известных данных по боратным системам с полученными нами позволило установить следующее:

- большинство известных двойных боратов относится к боратам, содержащим Li, Na и K (табл. 3);
<table>
<thead>
<tr>
<th>A</th>
<th>Li</th>
<th>Na</th>
<th>K</th>
<th>Rb</th>
<th>Cs</th>
<th>Tl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Фаза</td>
<td>Пр.гр.</td>
<td>Фаза</td>
<td>Пр.гр.</td>
<td>Фаза</td>
<td>Пр.гр.</td>
</tr>
<tr>
<td>Ca</td>
<td>1:2:1</td>
<td>2:1:1</td>
<td>P b c a ♦</td>
<td>3:2:5</td>
<td>P 1 △</td>
<td>1:2:1</td>
</tr>
<tr>
<td>Sr</td>
<td>1:2:1</td>
<td>1:2:9</td>
<td>P 1 2/m1 <</td>
<td>1:2:5</td>
<td>P 1 2/m1 <</td>
<td>1:2:5</td>
</tr>
<tr>
<td>Ba</td>
<td>1:2:1</td>
<td>1:2:9</td>
<td>P 12/m1 <</td>
<td>1:2:1</td>
<td>C1 2/m1 <</td>
<td>1:2:5</td>
</tr>
</tbody>
</table>

Условные обозначения сингоний:
△ – триклинная; < – моноклинная; ♦ – ромбическая; ♦ – гексагональная; □ – кубическая.
образование фаз состава 1:2:1 характерно для систем M₂O – AO – B₂O₃ (M = Li, Na, K, Rb; A = Mg, Ca, Sr, Ba), а в системах M₂O – MgO – B₂O₃ (M = Cs, Tl) образование соединений состава 1:2:1 не наблюдается (табл. 3 и 4);
• фазы состава 1:2:1 с Li и Na кристаллизуются в пр.гр. C 1 2/c 1, а с увеличением ионного радиуса M⁺ структура меняется, переходит от моноклинной к кубической сингонии;
• особенностю структур боратов состава 1:2:1 систем M₂O – MgO – B₂O₃ (M = K, Rb) является наличие достаточно больших полостей для внедрения дополнительных элементов или замещения атомов MІ или MІІ на близкие по размеру и заряду атомы;
• общим для структур соединений состава 1:2:1 является анионный каркас из BO₃-группировок, которые не соединены в более крупные кластеры, и поэтому к.ч. по кислороду для атомов бора не меняется;
• с увеличением ионного радиуса щелочноземельного элемента возрастает число фаз двойных боратов;
• при мольном соотношении, соответствующему неравенству M⁺ << M²⁺, возможна кубическая или ромбическая сингония;
• при мольном соотношении, соответствующему неравенству M⁺ < M²⁺ 1 (M = Li, Na) имеют кубическую сингонию,
• с увеличением ионного радиуса щелочноземельного элемента (для соединений состава 1:2:1) увеличивается к.ч. по кислороду (табл. 4);
• состав соединения не определяет пространственную группу.

Таблица 4

<table>
<thead>
<tr>
<th>Номер ICSD</th>
<th>Формула</th>
<th>Пр.гр.</th>
<th>К. Ч. По O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>67226-ICSD</td>
<td>LiMgBO₃</td>
<td>C 1 2/c 1</td>
<td>5(4)</td>
</tr>
<tr>
<td>249567-ICSD</td>
<td>NaMgBO₃</td>
<td>C 1 2/c 1</td>
<td>8(6)</td>
</tr>
<tr>
<td>Нашли данные</td>
<td>KMgBO₃</td>
<td>P 2₁,3</td>
<td>6(5)</td>
</tr>
<tr>
<td>Нашли данные</td>
<td>RbMgBO₃</td>
<td>P 2₁,3</td>
<td>6(5)</td>
</tr>
<tr>
<td>99386-ICSD</td>
<td>LiCaBO₃</td>
<td>P b c a</td>
<td>5(3)</td>
</tr>
<tr>
<td>260185-ICSD</td>
<td>NaCaBO₃</td>
<td>P m m n Z</td>
<td>6 и 8</td>
</tr>
<tr>
<td>92842-ICSD</td>
<td>LiSrBO₃</td>
<td>P 1 2/m n 1</td>
<td>5(3)</td>
</tr>
<tr>
<td>172420-ICSD</td>
<td>NaSrBO₃</td>
<td>P 1 2/c 1</td>
<td>6(4)</td>
</tr>
<tr>
<td>92843-ICSD</td>
<td>LiBaBO₃</td>
<td>P 1 2/m n 1</td>
<td>5(3)</td>
</tr>
<tr>
<td>73218-ICSD</td>
<td>LiBaBO₃</td>
<td>P 1 2/c 1</td>
<td>5(3)</td>
</tr>
<tr>
<td>250086-ICSD</td>
<td>NaBaBO₃</td>
<td>C 1 2/m 1</td>
<td>6(4)</td>
</tr>
<tr>
<td>80110-ICSD</td>
<td>NaBaBO₃</td>
<td>C 1 2/m 1</td>
<td>6(4)</td>
</tr>
</tbody>
</table>
• способность образовать соединения того или иного состава зависит от ионного радиуса одновалентного металла, так и от строения внешней электронной оболочки (радиусы Rb и Tl в соединениях RbMgBO3 и Tl2Mg2B12O21 по Шенону).

Бораты кубической сингонии (пр.гр. P213) состава MxAy(B2O3)z в литературе нами не обнаружены. В связи с этим новые бораты MMgBO3 (M = K, Rb) образуют начало «нового» структурного типа боратов (табл. 3 и 4). Замещение Mg на другие металлы с близким и размерами, возможно, даст продолжение ряда боратов с общей формулой МАВO3 (пр.гр. P213).

ВЫВОДЫ
• Впервые:
 1) изучены фазовые равновесия в тройных оксидных системах M2O – MgO – B2O3 (где M = Li÷Cs, Tl) в субсолидусной области и построены изотермические разрезы;
 2) выделены 3 новые группы двойных боратов: M24Mg3B10O30 (M = Li, Na), MMgBO3 (M = K, Rb) и M2Mg2B12O21 (M = Cs, Tl);
 3) подтверждено образование Li2Mg2B2O3 и MMgBO3 (M = Li, Na).
• Методом Ритвельда и минимизации производной разности (МПР) решена кристаллическая структура MMgBO3 (M = K, Rb) и уточнены кристаллографические характеристики KМgBO3 (a = 6.8302(4) Å, пр.гр. P213) и RbMgBO3 (a = 6.94926(5) Å, пр.гр. P213).
• Колебательная спектроскопия M24Mg3B10O30 и MMgBO3 (M = Li, Na) показала изоструктурность и центросимметричность изоформулярных соединений.
• Изучены ТЛ свойства M24Mg3B10O30 (M = Li, Na), MMgBO3 (M = Li, Na, K, Rb), M2Mg2B12O21 (M = Cs, Tl) при облучении β-источником и лампой УФ- света и показана перспективность их использования в качестве дозиметров ионизирующего излучения.
• Результаты проведенных исследований по допированию тетраборатов магния и кальция показали, что они являются основой для создания высокочувствительных термолюминофоров MgB4O7:Dy, MgB4O7:Dy,Li, CaB4O7:Dy,M (M = Li, Na, Tl), а легирование цезий-литиевого бората алюминием и рубидием позволяет получить совершенные кристаллы, которые могут найти применение в лазерном приборостроении.
Список цитированных литературы:

Основное содержание диссертации изложено в работах:
2. Курбатов Р.В. Фазовые равновесия в системах Me$_2$O – MgO – B$_2$O$_3$ (Me = Na, Rb) / Р.В. Курбатов, Б.Г. Базаров, А.К. Субанаков, Ж.Г. Базарова // Журн. неорган. химии. – 2010. – Т. 55, № 2. – С. 311-316.
7. Курбатов Р.В. Тройные системы Me$_2$O – MgO – B$_2$O$_3$ (Me = Li, Na, K, Rb) / Р.В. Курбатов, А.К. Субанаков // Материалы докл. V школы-семинара молодых ученых России. – Улан-Удэ: Изд-во БНЦ СО РАН,
8. Курбатов Р.В. Фазовые равновесия в системах Me₂O – MgO – B₂O₃ (Me = Li, Na) / Р.В. Курбатов, Б.Г. Базаров, А.К. Субанаков, Ж.Г. Базарова // Вестник БНЦ СО РАН. – 2009. – Окт.-дек. – С. 105.

